
 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

Proxy-Based Authorization and Accounting

for Distributed Systems

B. Cli�ord Neuman
Information Sciences Institute

University of Southern California

Abstract

Despite recent widespread interest in the secure au-

thentication of principals across computer networks

there has been considerably less discussion of dis-

tributed mechanisms to support authorization and ac-

counting. By generalizing the authentication model to

support restricted proxies, both authorization and ac-

counting can be easily supported. This paper presents

the proxy model for authorization and shows how the

model can be used to support a wide range of au-

thorization and accounting mechanisms. The proxy

model strikes a balance between access-control-list and

capability-based mechanisms allowing each to be used

where appropriate and allowing their use in combina-

tion. The paper describes how restricted proxies can

be supported using existing authentication methods.

1 Introduction

The problem of authentication across computer
networks has received much attention in recent years.
Authentication is often only a step in the process of
authorization or accounting. The goal is to verify that
the individual making a request is authorized to do so,
or to guarantee that the correct individual is charged
for an operation. Despite the close ties among these
problems, little progress has been made in providing
secure, widespread, distributed mechanisms for autho-
rization and accounting. To date, authorization and
accounting have most often been supported locally by
a server, instead of by the use of distributed autho-
rization or accounting services. Such authorization
and accounting services will be critical as the network
is used more and more for electronic commerce and
other applications where clients and servers not previ-
ously known to one another must interact. By gener-
alizing the authentication model to support restricted
proxies, distributed authorization and accounting can
be easily supported.

This paper presents a uni�ed model for authentica-
tion, authorization, and accounting that is based on
proxies. Section 2 de�nes the term proxy and brie
y
describes how proxies can be supported by existing
authentication mechanisms. The use of proxies for au-
thorization is demonstrated in Section 3. The proxy
model strikes a balance between access-control-list and
capability-based mechanisms allowing each to be used
where appropriate and allowing their use in combi-
nation. Section 4 discusses the necessary features of a
distributed accounting service and shows how account-
ing �ts the model. Section 5 discusses related work on
distributed authorization and accounting. Integration
of the described mechanisms with existing authentica-
tion systems is discussed in Section 6, and Section 7
discusses some of the more useful restrictions that can
be supported. Section 9 draws conclusions.

2 Restricted proxies

A proxy is a token that allows one to operate with
the rights and privileges of the principal that granted
the proxy. Naturally, it must be possible to verify that
a proxy was granted by the principal that it names.
This is an authentication problem. In fact a principal
with the credentials1 needed to authenticate itself can
often grant a proxy to another principal simply by
passing on those credentials.

Implementing proxies in this manner has several
shortcomings. First, the proxy can be used by anyone
that gets hold of it. This won't always be a prob-
lem, but in many cases one should be able to specify
the principal that is to act on one's behalf. Second, a
proxy is all or nothing. The individual who has been
granted the proxy can do anything that the grantor
could do on any service to which the original creden-
tials applied.

1Credentials consist of an encrypted certi�cate togetherwith
information needed to use the certi�cate.

283

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

Certi�cate: [restrictions;Kproxy]grantor
Proxy-key: Kproxy

Figure 1: A restricted proxy

A restricted proxy is a proxy that has had condi-
tions placed on its use. A principal possessing au-
thentication or authorization credentials can generate
a restricted proxy, a new set of credentials which are
more restricted than the original credentials; it is not
possible to remove restrictions. It must be possible
for the server to which a restricted proxy will be pre-
sented (the end-server) to verify that the restrictions
have not been tampered with. Among the restrictions
that are often speci�ed are that the proxy may only be
used by a designated principal, or that the operations
that may be performed are to be restricted.

When a principal issues a restricted proxy to an-
other principal, the second principal is authorized to
perform all operations for which the �rst principal is
authorized on the server or servers for which the proxy
is applicable, subject to any restrictions recorded in
the proxy. In the discussion that follows, the grantor

is the principal on whose behalf a proxy allows access.
The grantee is the principal designated to act on behalf
of the grantor. The end-server is the server to which
the proxy must be presented to perform an operation.

The implementation of restricted proxies relies on
the use of encryption-based authentication of the orig-
inal grantor of the proxy. Either conventional or
public-key cryptography may be used. In this section
I describe the implementation at a high level, inde-
pendent of the authentication mechanism in use. The
description assumes that the infrastructure needed to
authenticate the original grantor of a proxy is in place
and messages required by the underlying authentica-
tion protocol (e.g., for key distribution) are omitted
for clarity. These details, which are speci�c to the un-
derlying authentication mechanism, are described in
Section 6.

A restricted proxy has two parts: 1) a certi�cate
signed by the grantor establishing the proxy, enumer-
ating any restrictions, and establishing an encryption
(or integrity) key2 to be used by the end-server to ver-
ify that the proxy was properly issued to the bearer,
and 2) a proxy key, an encryption (or integrity) key
corresponding to the key embedded in the certi�cate,
that will be used by the grantee to prove proper pos-
session of the proxy. Figure 1 shows the contents of a
restricted proxy; square brackets indicate a signature
by the principal indicated in the subscript, or under

2Depending on the authentication mechanisms in use, this
key may require additional protection from disclosure.

Accounting

Authentication Infrastructure

Restricted Proxies
Base Authorization Mechanism

Service
G

roup

Service

C
apabilities

D
elegation

A
uthorization

Figure 2: Relationship of security services

a separate encryption (or integrity) key. When a re-
stricted proxy is transferred from the grantor to the
grantee, care must be taken to protect the proxy key
from disclosure.

There are two classes of proxies: bearer proxies and
delegate proxies. A bearer proxy may be used by any-
one. A delegate proxy may only be used by a principal
named in a list of delegates (encoded as a restriction),
or by someone with a suitable additional proxy issued
by a named delegate.

To present a bearer proxy to an end-server, the
grantee sends the certi�cate to the server and uses the
proxy key to partake in an authentication exchange
with the end-server using the underlying authentica-
tion mechanism. Usually this exchange involves send-
ing a signed or encrypted timestamp or server chal-
lenge, proving possession of the proxy key.

To present a delegate proxy, the grantee sends the
certi�cate to the end-server and then authenticates
itself to the end-server under its own identity. The
end-server validates the certi�cate and veri�es that
the client is included in the list of delegates speci�ed
by the proxy.

3 Authorization

Restricted proxies provide the vehicle for imple-
menting a wide range of authorization mechanisms in
distributed systems. In this section I describe sev-
eral such mechanisms and show how they can be sup-
ported. Accounting mechanisms are described in Sec-
tion 4 and build upon the authorization mechanisms
described here. Figure 2 shows the relationship of such
mechanisms to restricted proxies and to the authenti-
cation infrastructure on which they depend.

284

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

3.1 Capabilities

A capability can be thought of as a bearer proxy
that is restricted to limit the operations that can be
performed and the objects that can be accessed. No
restrictions are placed on the identity of the grantee
who is free to pass the capability to others. When
presented to the end-server, the grantor's rights (as
limited by the restrictions) are available to the bearer.

For example, to create a read capability for a par-
ticular �le, a user authorized to read that �le requests
a restricted proxy for use at the �le server containing
the �le (the end-server), but with the restriction that
it can only be used to read the named �le. The ca-
pability is then passed to others who can themselves
pass it on. To use a capability, the bearer presents
it to the �le server in place of (or in addition to) the
bearer's own credentials. If the request is to read the
�le named in the capability, the operation is performed
with the rights of the grantor of the proxy.

A capability as described above di�ers from tradi-
tional capabilities in several ways. One of the most
important distinctions is that in presenting a capa-
bility (restricted proxy) to the end-server, the bearer
does not send the entire proxy across the network. In-
stead, the bearer sends the certi�cate part of the proxy
and proves possession by taking part in an authentica-
tion exchange using the proxy key as described earlier.
The result is that an attacker can not obtain such a
capability by tapping the network to observe the pre-
sentation of capabilities by legitimate users.

A second distinction is that, as described above,
a capability allows a restricted impersonation of the
grantor, not direct access to the named object. This
means that one can revoke a capability by changing
the access rights available to the grantor of the ca-
pability. Such a change would a�ect all capabilities
that had been issued by that grantor (as well as any
copies), but not those that had been issued by others.
If the only principal with a priori access to an object
is its owner, this distinction disappears as there can
be only one original grantor.

A �nal distinction, as implemented on most authen-
tication systems, is that the resulting capability would
have an expiration time. This is a feature. If a non-
expiring capability is desired, the expiration time can
be set su�ciently far in the future.

3.2 An authorization server

An authorization server implemented using re-
stricted proxies does not directly specify that a par-
ticular principal is authorized to use a particular ser-
vice or access a particular object. Instead, when

R

SC
30

1
2

2. [operation X only]R, {Kproxy}Ksession
1. Authenticated authorization request (operation X)

3. [operation X only]R, authentication using Kproxy

Figure 3: The authorization protocol

requested by an authorized client, the authorization
server grants a restricted proxy allowing the autho-
rized client (the grantee) to act as the authorization
server for the purpose of asserting the client's rights
to access particular objects. The restrictions in the
proxy (in this case a list of authorized actions) are
determined by consulting the authorization server's
database or applying other suitable heuristics.

Figure 3 shows the messages involved when client C
uses authorization server R for authorization to end-
server S. The solid lines represent messages in the au-
thorization protocol. The initial request for autho-
rization is authenticated using the underlying authen-
tication protocol. The authorization credentials (a re-
stricted proxy) returned in 2 consist of a certi�cate
and a proxy key. The proxy key is returned protected
from disclosure by encrypting it under the session key
exchanged during authentication with R (encryption
is represented by curly braces fg). To use the proxy,
the client presents the proxy to the end-server, par-
taking in an authentication exchange as described in
Section 2. Message 0, the dashed line in the �gure,
represents a priori knowledge about the authoriza-
tion credentials needed for server S. This information
might be speci�ed as part of the application protocol,
retrieved from a name server, or obtained from the
end-server directly.

An end-server wishing to use the services of an au-
thorization server would grant full or the maximum
desired access to the authorization server (this is de-
scribed in detail in Section 3.5).

3.3 A group server

A group server implemented using restricted prox-
ies grants proxies that delegate the right to assert
membership in a particular group. The protocol is
the same as that for the authorization server in �g-
ure 3; the authorized operation is the assertion of
group membership.

285

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

Certi�cate: [restrictions1;Kproxy1]grantor
Certi�cate: [restrictions2;Kproxy2]Kproxy1

Certi�cate: [restrictions3;Kproxy3]Kproxy2

Proxy-key: Kproxy3

Figure 4: Cascaded proxies

A group server might maintain more than one
group. The name of a group as asserted by the group
server is unique only for a particular group server (or
a small set of servers). As such, a global name of a
group is composed of the name of the group server,
and the name of the group on that server.

It should be possible for the name of a group to
appear in authorization databases anywhere that the
name of any other principal might appear. This might
be on the end-server, or in an authorization server, or
even on another group server. An end-server wishing
to use a group server would include the name of a
group in its authorization database. A client would
obtain a group proxy from the group server and send
it to the end-server when requesting an operation. The
end-server would verify the authenticity of the proxy
and the identity of the client, and if valid perform the
operation.

If the end-server's authorization database is main-
tained by an authorization server, then the client
would present the group proxy to the authorization
server, and if all checks out, the authorization server
would return an authorization proxy to be used by the
client as described in the previous subsection.

3.4 Cascaded authorization

In a paper on cascaded authentication [11], Sollins
proposed a method to pass authorization from party
to party when a task involves cascaded operations by
parties that do not completely trust one another. A
similar mechanism is supported more e�ciently by re-
stricted proxies.

By its de�nition, a proxy allows one principal to
perform an operation on behalf of another. An inter-

mediate server that has been granted a bearer proxy
can pass that proxy to a subordinate server (the next
server in the pipeline) with additional restrictions ap-
plied. Restrictions are added by signing a new proxy
with the proxy key from the original proxy. The new
proxy speci�es any additional restrictions and a new
proxy key. The certi�cates from both proxies are pro-
vided to the subordinate server, but only the proxy
key from the �nal proxy in the chain is provided. Fig-
ure 4 shows a chain of proxies that might be provided
to a subordinate server.

Cascaded authorization is a little di�erent for del-
egate proxies. To pass a delegate proxy to a subordi-
nate, an intermediate server provides the subordinate
with the certi�cate from the original proxy. Because
the intermediate server is explicitly named in the orig-
inal proxy, it also grants the subordinate a new proxy
allowing the subordinate to act as the intermediate
server for the purpose of executing the original proxy.
Instead of signing the new proxy with the proxy key
from the original proxy, it is signed directly by the
intermediate server. An important di�erence between
the two approaches to cascaded authorization is that
the use of a delegate proxy leaves an audit trail since
the new proxy identi�es the intermediate server.

A distinct di�erence between the cascaded authen-
tication approach described by Sollins and the ap-
proach described here is that in Sollins's approach the
end-server has to contact the authentication server to
verify the authenticity of a chain of proxies.

3.5 Access-control-lists and capabilities

By basing authorization on the proxy model, ap-
plication servers can easily combine the bene�ts of
access-control-lists and capability-based authorization
mechanisms. Application servers would be designed
to base authorization on a local access-control-list.
Where a capability-based approach is required, the
access-control-list would contain a single entry naming
the principal (perhaps the server itself) authorized to
grant capabilities for server operations.

Similarly, when appropriate to hand o� the autho-
rization function to a centrally maintained authoriza-
tion or group server, the name of the authorization
or group server would be added to the local access-
control-list. In fact, if local autonomy is desired, local
users might appear directly in the access-control-list
together with the name of an authorization server to
which the function of authorizing remote users has
been assigned.

Since the same access-control-list abstraction
should be used on the authorization servers as on other
servers, access-control-list entries can support an asso-
ciated list of restrictions. On an authorization server,
the restrictions �eld of a matching access-control-list
entry can be copied to the restrictions �eld of the re-
sulting proxy. These would be in addition to restric-
tions transferred from any proxies presented to the
authorization server or those imposed by the server
itself.

Finally, by supporting compound principal identi-
�ers in access-control-list entries, it becomes possible
to require the concurrence of multiple principals for

286

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

certain operations. Among other things, this func-
tionality allows one to specify the need for both user
and host credentials for certain operations as well as
the separation of privilege so that a single user can't
act alone. Proxy-based authorization allows a user to
obtain proxies from more than one grantor for a par-
ticular operation, providing the mechanism by which
the user would assert such concurrence.

4 Accounting

Section 3 showed how restricted proxies support a
wide range of authorization mechanisms. Accounting
is closely tied to authorization; in fact, the two are in-
terdependent. Authorization depends on accounting
when a server veri�es that a client has been allocated
su�cient resources (e.g, quota) to perform an opera-
tion. Conversely, accounting depends on authorization
to control the transfer of resources from one account
to another.

In our design, accounts are maintained on account-
ing servers. At a minimum, each account contains
a unique name, an access-control-list, and a collec-
tion of records, each record specifying a currency and
a balance. Accounting servers support multiple cur-
rencies, either monetary (dollars, pounds, or yen) or
resource speci�c (disk blocks, cpu cycles, or printer
pages). Quotas are implemented by transferring funds
of the appropriate currency out of an account when the
resource is allocated and transferring the funds back
when the resource is released. Accounts are identi-
�ed as the composition of the principal identi�er for
the accounting server and the name of the account on
the server. It is possible to transfer resources from an
account on one server to one on another.

The transfer of resources can be accomplished
through two distinct mechanisms. The simplest mech-
anism is used when no guarantee is required that suf-
�cient resources exist. A principal authorized to debit
an account (the payor) issues a numbered delegate
proxy (a check) authorizing the payee to transfer funds
from the payor's account to that of the payee. This
check limits the resources that can be transferred, and
the payee transfers up to that limit. If the payor uses
a di�erent accounting server than the payee, the payee
grants its own accounting server a cascaded proxy
(endorsement) for the check allowing the accounting
server to collect the resources on its behalf. Subse-
quent accounting servers repeat the process until the
payor's accounting server is reached. Once a check is
paid, the accounting server keeps track of the check
number until the expiration time on the check. If,
within that period, another check with the same num-
ber is seen, it is rejected.

$2
E2

E1

$1

E2: [ckno,amount,S]C [dep ckno to $1]S [dep ckno to $2]$1
E1: [ckno,amount,S]C [dep ckno to $1]S

check: [ckno,amount,S]C

check
CS

Figure 5: Processing a check

Figure 5 shows the messages involved in issuing and
clearing such a check. In the �gure, accounting servers
are labeled by $s. The �rst message represents a check
signed by C drawn on C's accounting server $2 made
payable to server S. Upon completion ofC's request, S
endorses the check and deposits it with its accounting
server in message E1. The endorsement is a restricted
proxy that will be used for cascaded authorization. A
restricted endorsement (e.g. for deposit only) is a del-
egate proxy, an unrestricted endorsement is a bearer
proxy.

In this case, C and S do not share the same ac-
counting server, so $1 marks the resources added to
S's account as uncollected, adds its own endorsement
and forwards the check to $2 in message E2. If nec-
essary, such endorsements can be repeated until the
check reaches the client's accounting server, but in this
case only one additional step is necessary. This dis-
tributed method for accounting requires out-of-band
mechanisms to deal with checks returned for insuf-
�cient resources, or because they are forged or mis-
drawn, but the same is true in the real world.

The second approach for transferring resources is
used when a server requires a guarantee that su�cient
resources have been allocated to the client, as is often
the case when maintaining quotas. The approach is
analogous to that of a certi�ed check. The client draws
a check and provides the details (the check number,
the party to be paid, and the amount) to the account-
ing server. The accounting server places a hold on the
resources and returns an authorization proxy to the
client certifying that the client has su�cient resources
to cover the check. The client presents the authoriza-
tion proxy and the check to the end-server along with
its application request.

Once the requested operation is performed, the end-
server negotiates the check as described earlier. When
the check reaches the client's accounting server, the
accounting server looks for the check in its list of

287

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

outstanding certi�ed checks, and if found, makes the
transfer. Cashier's checks are also easily supported
by this accounting model; the details are left as an
exercise for the reader.

5 Related work

This section describes other work that has been
done on authorization and accounting for distributed
systems. Some of the earliest work in the area is found
in Grapevine [2] where end-servers query registration
servers to determine whether a client is a member of
a particular group. A similar approach is employed in
Sun's Yellow Pages where centrally maintained �les
such as /etc/group are consulted for authorization
purposes. In both approaches, the authorization de-
cision remains with the local system. With the dis-
tributed authorization and group services supported
by restricted proxies, the authorization decision can
be delegated to a remote server.

There have been several proposals concerning for-
warding and delegation of authentication in dis-
tributed systems. Karger [6] proposed a server that
keeps track of special passwords that are established
when a user logs in. These passwords are passed to
other systems which act on the user's behalf for opera-
tions that require the cascaded use of multiple servers.
This scheme is not encryption-based, but relies on se-
cure channels for passing the special passwords. These
channels might be implemented on top of an end-to-
end encryption mechanism.

A mechanism that comes close to restricted proxies
is the cascaded authentication mechanism described
by Sollins [11] in which restrictions can be added as
credentials are passed from system to system. The
di�erences between Sollins' approach and proxy-based
cascaded authorization was described in Section 3.4.

The proxy model described by this paper was de-
signed for use in Version 5 of the Kerberos authentica-
tion system. Support for proxies was �rst included in
the Kerberos protocol speci�cation in mid 1989 [7]. At
about the same time, another mechanisms for delega-
tion was developed as part of the Digital Distributed
System Security Architecture [4, 5]. In the DSSA,
principals generate and sign delegation certi�cates to
allow intermediate systems to act on their behalf. An
important di�erence is that in the DSSA, restrictions
are supported only by creating separate principals,
called roles, and by generating a delegation certi�-
cate for one of the roles instead of for the original
principal. The delegation then supports only access
speci�cally authorized for that role. The creation of
a new role is cumbersome when delegating on the
y

Certi�cate: frestrictions;KproxygK
�1
grantor

Proxy-key: K�1
proxy

Figure 6: A public-key restricted proxy

or when granting access to individual objects. Roles
can not be used to implement the authorization server
described in Section 3.2.

Functionality similar to that of the authorization
and group services of Sections 3.2 and 3.3 has been
proposed as part of the European Computer Man-
ufacturers Association standard for security in open
systems [1]. The ECMA standard de�nes Privilege
Attributed Certi�cates (PACs) signed by an author-
ity and certifying that the bearer or a named principal
possess certain privileges.

Work is underway for the Open Software Founda-
tion's Distributed Computing Environment that uses
restricted proxies as supported by Kerberos to pass au-
thorization information. In particular, they have im-
plemented a privilege attribute server that signs cer-
ti�cates asserting a principal's unique identi�er and
a set of user groups to which the principal belongs.
Plans are in place to extend their mechanism to sup-
port delegation [3].

Surprisingly little attention has been paid to the
issue of accounting in distributed systems. Sentry [9]
lays the groundwork for accounting by describing a
mechanism that would be co-located with an authenti-
cation and authorization server. Although they share
a common mechanism, it seems apparent now that
there is little to be gained by requiring all three ser-
vices to be co-located. Like the accounting mechanism
described here, Sentry pointed out the need to support
multiple currencies.

Amoeba [8] supports a distributed bank server iden-
tical in purpose to the accounting server based on re-
stricted proxies. The protocol used by Amoeba's bank
server is signi�cantly di�erent, however. In Amoeba,
a client must contact the bank and transfer funds into
the server's account before it contacts the server. The
server will then provide services until the pre-paid
funds have been exhausted. Like the mechanism de-
scribed here, Amoeba supports multiple currencies.

6 Integration with existing systems

It is straightforward to implement restricted prox-
ies using encryption-based authentication mechanisms
based on either public-key or conventional cryptogra-
phy. This section shows how proxies can be imple-
mented with either approach and describes the speci�c
details of their support in Version 5 of the Kerberos
authentication system.

288

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

6.1 Public-key cryptography

The certi�cate for a public-key proxy contains a
proxy key generated by the grantor, the expiration
time of the proxy, and the restrictions imposed its use.
The proxy key embedded in the proxy certi�cate is a
public key from a public/private key pair. The proxy
key provided to the grantee is the other key from that
pair. All �elds are signed by encrypting them with the
grantor's private key. Figure 6 shows a proxy gener-
ated in this manner. The signed proxy is additionally
tagged with the name of the grantor to enable those
needing to verify the proxy to select the correct key.

If the authentication system is purely public-key,
a public-key digital signature algorithm can be used
in place of the encryption system and the encryption
step would be replaced by the sealing of the certi�cate
with a cryptographic checksum. If a hybrid authenti-
cation system is used, where subsequent keys are from
a conventional cryptosystem, then the proxy key is
a conventional key generated by the grantor and the
proxy key must be additionally encrypted in the public
key of the end-server to protect it from disclosure.

The proxy is returned to the grantee. When the
grantee presents the proxy to an end-server, the end-
server decrypts the proxy using the public key of
the grantor (obtained from an authentication/name
server), veri�es the authenticity of the proxy, accepts
additional authentication from the grantee (either per-
sonal authentication for a delegate proxy or proof that
it knows the proxy key for a bearer proxy), checks
the restrictions, and if all checks out, performs the
requested operation.

6.2 Restricted proxies in Kerberos

A proxy implemented using an authentication sys-
tem based on conventional cryptography is identical
to that in �gure 6 except that the proxy is accompa-
nied by credentials authenticating the grantor to the
end-server. The proxy certi�cate is encrypted using
the session key generated by an authentication server,
the session key also having been earlier sealed in the
credentials. The proxy key is a secret key generated
by the grantor. This key is both sealed in the proxy
certi�cate and securely passed to the grantee. The re-
mainder of this section describes the integration of re-
stricted proxies with Kerberos [12], an authentication
system based on conventional cryptography developed
as part of MIT's Project Athena.

Kerberos credentials are issued by an authentica-
tion server and presented by a client to prove its iden-
tity to a particular end-server. Credentials consist of
two parts: a ticket, and a session key. The ticket con-

tains the name of the authenticated principal and a
session key. It is encrypted using the secret key shared
by the end-server and the Kerberos server. The ses-
sion key is never sent across the network in the clear.
The session key is returned to the client encrypted in
the session key shared by the client and the Kerberos
server.

To prove its identity, a client sends the ticket to the
end-server along with an authenticator which has been
encrypted using the session key. The authenticator
proves that the client actually possesses the session key
included in the ticket. Without this step an attacker
would be able to reuse a ticket that it obtained by
eavesdropping on an earlier exchange.

Kerberos has been in use at MIT since Fall of 1986,
and it has been used elsewhere since then. Version 5 of
Kerberos [7] is the �rst major revision of the protocol
since its original release and contains several new fea-
tures important for the practical support of restricted
proxies. The inclusion of explicit support for prox-
ies in Version 5 makes their use more transparent to
applications which have already been modi�ed to use
Kerberos.

The Version 5 ticket and authenticator each have
a new �eld called authorization-data. This �eld con-
sists of an arbitrary number of typed sub-�elds, each of
which places restrictions on the use of the ticket. The
Kerberos protocol does not specify how the sub-�elds
are to be interpreted except to stress that restrictions
must be additive. Each sub�eld places additional re-
strictions on the use of credentials, never removing
restrictions or granting additional privileges.

When tickets are requested, the requesting princi-
pal can specify that restrictions be placed on their use.
When new tickets are issued based on existing creden-
tials, restrictions may be added, but not removed. To
add restrictions to an existing ticket, a client gener-
ates an authenticator specifying a proxy key in the
subkey �eld and specifying additional restrictions in
the authorization-data �eld. The ticket and authenti-
cator are treated as the new proxy and provided with
the new proxy key to the grantee. Once obtained, the
grantee can use such a proxy the same way it uses any
other credentials issued by the authentication system.

6.3 Discussion

Supporting proxies within an authentication mech-
anism has several advantages. Transparency is one ad-
vantage; a second is that the initial authentication of a
user can itself be thought of as the granting of a proxy
and restrictions can be placed on the credentials based
on the characteristics of the initial exchange with the
authentication server.

289

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

A disadvantage of using conventional cryptography
to implement proxies is that each proxy can be used at
only a particular end-server. This is o�set by imple-
menting proxies within Kerberos itself since it is possi-
ble to issue a proxy for the Kerberos \ticket-granting"
service. Such a proxy allows the grantee to obtain
proxies with identical restrictions for additional end-
servers as needed.

7 Common restrictions

The restrictions �eld of a proxy should be inter-
preted as a collection of typed sub�elds, each type
corresponding to a di�erent restriction. This section
describes several of the more useful restrictions and
some that demonstrate the
exibility of the model.
Additional restrictions are described in [10]. Neither
should be construed as a complete list.

7.1 Grantee

This restriction speci�es a list of principals autho-
rized to use a proxy and the number of principals from
the list needed to exercise the proxy (usually one). To
use such a proxy a principal must present the authenti-
cation credentials of a named grantee, or an additional
proxy granted by a named grantee, to the end-server
along with the proxy. If the grantee restriction is
missing, the proxy is a bearer proxy and may be used
by anyone possessing it. To exercise a bearer proxy the
bearer must take part in an authentication exchange
proving possession of the proxy key thus preventing an
attacker fromusing a proxy obtained by eavesdropping
on the network.

7.2 For-use-by-group

The for-use-by-group restriction speci�es the list
of groups authorized to use a proxy and the number
of groups from the list required. To use such a proxy,
the bearer presents the proxy along with additional
proxies from appropriate group servers. One way to
implement separation of privilege is to require asser-
tion of membership in multiple groups with disjoint
members.

7.3 Issued-for

The issued-for restriction speci�es a list of servers
authorized to accept the proxy. This restriction is im-
portant for public-key proxies which are otherwise ver-
i�able by and exercisable on all servers.

7.4 Quota

The quota restriction speci�es a currency and a
limit. It limits the quantity of a resource that can be
consumed or obtained. It will most often be found in
a proxy issued by an accounting server.

7.5 Authorized

The authorized restriction speci�es a complete list
of those objects which may be accessed using the rights
granted by a proxy and optionally a list of operations
that may be performed on each object. This restric-
tion usually appears in proxies used as capabilities.
It also appears in proxies returned by an authoriza-
tion server. There are no constraints on the form of
the object names or the list of operations other than
that the grantor and the end-server must agree. These
�elds are to be interpreted by the end-server.

7.6 Group-membership

This restriction speci�es that the grantee is a mem-
ber of only the listed groups. It would be included in
a proxy issued by a group server to limit the groups to
which one is a member. Without this restriction, the
grantee would be considered a member of all groups
maintained by the group server granting the proxy.

7.7 Accept-once

The accept-once restriction tells an end-server
that it is only to accept a proxy one time. This re-
striction takes an identi�er as an argument. Any sub-
sequent proxy from the same grantor bearing the same
identi�er and received by the end-server within the ex-
piration time of the �rst proxy is rejected. A real life
example of such an identi�er is a check number.

7.8 Limit-restriction

Restrictions that are de�ned only for particular
end-servers are sometimes needed. If a proxy can be
used on a server to which some restrictions do not
apply, those restrictions must be associated with the
name of the server to which they do apply. This is
accomplished with the limit-restriction restriction
which takes a list of servers and a list of other restric-
tions. The restrictions embedded within this restric-
tion will be enforced by the named servers and ignored
by others.

7.9 The propagation of restrictions

Authentication, authorization, and group servers
accept proxies and issue proxies. If a proxy is issued
based upon a proxy that includes restrictions, those
restrictions should be passed on to the proxy to be is-
sued. If a restriction is limited (see limit-restriction)
then the restriction may be left out if it can be guar-
anteed that the proxy to be issued, and any proxies
that might later be derived from it, can not be used
for any of the servers listed in the limited restriction.

290

 Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.

8 Status

A beta release of Kerberos Version 5 is avail-
able. The release includes support for restricted prox-
ies. Information on the Kerberos release is available
from info-kerberos@mit.edu. Authorization and
accounting services built with restricted proxies are
being developed at the Information Sciences Institute
of the University of Southern California.

9 Discussion and conclusions

The problems of authentication, authorization, and
accounting are closely related. By subtly changing the
way one thinks about the problems, the similarities be-
come apparent. By extending an authentication sys-
tem to support restricted proxies, it becomes possible
to support
exible distributed authorization and ac-
counting mechanisms. The proxy model strikes a bal-
ance between access-control-list and capability-based
mechanisms allowing each to be used where appropri-
ate and allowing their use in combination.

This paper has shown how restricted proxies can be
supported using existing authentication systems and
how they are used for authorization and accounting.
The resulting mechanisms scale and appear natural
when compared with their analogues in society.

Acknowledgments

I would like to thank Celeste Anderson, Steven Au-
gart, Steve Bellovin, Deborah Estrin, David Keppel,
John Kohl, Ed Lazowska, Joe Pato, Karen Sollins, Bill
Sommerfeld, Stuart Stubblebine, and Prasad Upasani
for discussions of restricted proxies and comments on
drafts of this paper.

References

[1] European Computer Manufacturers Association.
Security in open systems: Data elements and
service de�nitions, December 1989. Standard
ECMA-138.

[2] Andrew D. Birrell, Roy Levin, Roger M. Need-
ham, and Michael D. Schroeder. Grapevine: An
exercise in distributed computing. Communica-

tions of the ACM, 25(4):260{274, April 1982.

[3] Marlena E. Erdos and Joseph N. Pato. Extending
the OSF DCE authorization system to support
practical delegation. In Proceedings of the PSRG

Workshop on Network and Distributed System

Security, pages 93{100, February 1993.

[4] M. Gasser, A. Goldstein, C. Kaufman, and
B. Lampson. The Digital distributed system secu-
rity architecture. In Proceedings of the 1989 Na-

tional Computer Security Conference, pages 305{
319, October 1989.

[5] M. Gasser and E. McDermott. An architecture
for practical delegation in a distributed system.
In Proceedings of the 1990 IEEE Symposium on

Security and Privacy, pages 20{30, May 1990.

[6] Paul A. Karger. Authentication and discretionary
access control in computer networks. Computer

Networks and ISDN Systems, 10(1):27{37, 1985.

[7] John T. Kohl and B. Cli�ord Neuman. The Ker-
beros network authentication service: Version 5
draft protocol speci�cation. August 1989. Re-
vised November 1989, October 1990, December
1990, June 1991, September 1992, April 1993.

[8] S. J. Mullender and A. S. Tanenbaum. The de-
sign of a capability-based distributed operating
system. The Computer Journal, 29(4):289{299,
1986.

[9] B. Cli�ord Neuman. Sentry: A discretionary
access control server. Bachelor's Thesis, Mas-
sachusetts Institute of Technology, June 1985.

[10] B. Cli�ord Neuman. Proxy-based authorization
and accounting for distributed systems. Technical
Report 91-02-01, Department of Computer Sci-
ence and Engineering, University of Washington,
March 1991.

[11] Karen R. Sollins. Cascaded authentication. In
Proceedings of the 1988 IEEE Symposium on Re-

search in Security and Privacy, pages 156{163,
April 1988.

[12] J. G. Steiner, B. C. Neuman, and J. I. Schiller.
Kerberos: An authentication service for open
network systems. In Proceedings of the Winter

1988 Usenix Conference, pages 191{201, Febru-
ary 1988.

This research was supported in part by the National Science
Foundation (Grant No. CCR-8619663), the Washington Tech-
nology Centers, Digital Equipment Corporation, and the De-
fense Advance Research Projects Agency under NASA Cooper-
ative Agreement NCC-2-539. The views and conclusions con-
tained in this paper are those of the author and should not
be interpreted as representing the o�cial policies, either ex-
pressed or implied, of any of the funding agencies. The author
may be reached at USC/ISI, 4676 Admiralty Way, Marina del
Rey, CA 90292-6695, USA. Telephone +1 (310) 822-1511, email
bcn@isi.edu.

291

